Oxidation of Alcohols, Aldehydes, and Carboxylates by the Aquachromium(IV) Ion

Susannah L. Scott, Andreja Bakac,* and James H. Espenson*

Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50011. Received September 3, 1991

Abstract: Four methods have been developed to prepare aquachromium(IV), which we believe to be an oxo ion, CrO²⁺. It readily converts Ph₃P to Ph₃PO ($k = 2.1 \times 10^3$ L mol⁻¹ s⁻¹) at 25 °C in 85% CH₃CN/H₂O (0.10 M HClO₄). The reactions used to form CrO_2^{+} are those between Cr^{2+} and (a) O_2 (b) anaerobic CrO_2^{2+} , (c) anaerobic $CrOOCr^{4+}$, and (d) anaerobic Tl(III). The CrO^{2+} has a half-life of 30 s in acidic solution at room temperature and will oxidize alcohols, aldehydes, and certain carboxylates as well as diethyl ether. The second-order rate constants (L mol⁻¹ s⁻¹) in acidic solution ($\mu = 1.0$ M HClO₄/LiClO₄, 25 °C) are as follows: CH₃OH, 52; CD₃OH, 15; C₂H₅OH, 88; C₂D₅OH, 41; (CH₃)₂CHOH, 12.0; (CD₃)₂CDOH, 4.6; CH2=CHCH2OH, 101; CH3(CH2)2CH2OH, 44; (C2H3)(CH3)CHOH, 41; (CH3)3CCH2OH, 39; C6H3CH2OH, 56; (C₆H₅)(CH₃)CHOH, 30; (C₆H₅)₂CHOH, 10.5; *p*-CH₃OC₆H₄CH₂OH, 71; *p*-CH₃C₆H₄CH₂OH, 66; *p*-CF₃C₆H₄CH₂OH, 60; c-C₄H₇OH, 44; c-C₅H₉OH, 31; HCHO·H₂O, 92; (CH₃)₃CCHO, 37; HCO₂H, 11.6; HCO₂⁻, 6.9 × 10³; HC₂O₄⁻, 2.2 × 10³; (C,H₅)₂O, 4.5. Activation parameters were also determined for selected reactions. In all but two of these reactions (cyclobutanol and pivaldehyde), Cr^{2+} is the immediate product as shown by trapping with O₂. On the basis of the kinetic and product data, the mechanism of oxidation by CrO^{2+} is proposed to be hydride transfer. The reactivity order for alcohols (1° > CH₃ > 2°), the small substituent effect for the benzyl alcohols, and the similarity of all the rate constants regardless of the organic substrate are inconsistent with the formation of carbon-centered radicals. The reaction of $HCrO_4$ with $(CH_3)_2CHOH$ is also shown to involve CrO^{2+} and Cr^{2+} as intermediates. The latter reacts with $HCrO_4^-$ with a rate constant of $2 \times 10^9 L \text{ mol}^{-1} \text{ s}^{-1}$ in 2.0 M HClO₄.

Introduction

The intermediate IV and V oxidation states of chromium proved elusive to coordination chemists for many years. Recently, complexes of Cr(V) with Schiff base¹ and carboxylate ligands² have been isolated in which the V oxidation state is stable enough to permit spectroscopic and even crystallographic characterization. The IV oxidation state is known as a diperoxo species³ and with the tetraphenylporphyrin ligand.⁴ Recently, electrochemical and kinetic evidence for a Cr(IV) intermediate was obtained in the reduction of bis(2-ethyl-2-hydroxybutanoato)oxochromate(V) by one-electron reducing agents^{5a} and reduction of HCrO₄ by two-electron reducing agents, such as As(III), in the presence of the 2-ethyl-2-hydroxybutanoate ligand.5b Without such ligand stabilization, i.e., as an aqua complex, Cr(IV) has generally been considered unstable and highly reactive.⁶ We present evidence to the contrary in this report.

It has long been recognized that the one- and two-electron oxidations of various metal ions⁷ and organic substrates⁸ by H₂CrO₄ must proceed through hydrated Cr(IV) and -(V) species. Evidence has been presented⁹ for the intermediacy of Cr(V) in

(3) House, D. A.; Garner C. S. Nature (London) 1965, 208, 776. Stomberg, R. Ark. Kemi 1965, 24, 47.

berg, R. Ark. Remi 1905, 24, 41.
(4) Budge, J. R.; Gatehouse, B. M. K.; Nesbit, M. C.; West, B. O. J. Chem. Soc., Chem. Commun. 1981, 370. Groves, J. T.; Kruper, W. J.; Haushalter, R. C.; Butler, W. M. Inorg. Chem. 1982, 21, 1363. Buchler, J. W.; Lay, K. L.; Castle, L.; Ullrich, V. Inorg. Chem. 1982, 21, 842. Yuan, L.-C.; Bruice, T. C. J. Am. Chem. Soc. 1985, 107, 512. Liston, D. J.; West, B. O. Inorg. Chem. 1985, 24, 1568.
(5) (a) Roce, P. N.; Neff V. D.; Cavid, F. S. Kusse, Cham. 1986, 25, 146.

B. O. Inorg. Chem. 1985, 24, 1568.
(5) (a) Bose, R. N.; Neff, V. D.; Gould, E. S. Inorg. Chem. 1986, 25, 165.
Judd, R. J.; Hambley, T. W.; Lay, P. A. J. Chem. Soc., Dalton Trans. 1989, 2205. Fanchiang, Y.-T.; Bose, R. N.; Gelerinter, E.; Gould, E. S. Inorg. Chem. 1985, 24, 4679. Bose, R. N.; Gould, E. S. Inorg. Chem. 1986, 25, 94.
Bose, R. N.; Rajasekar, N.; Thompson, D. M.; Gould, E. S. Inorg. Chem. 1986, 25, 94.
Bose, R. N.; Rajasekar, N.; Thompson, D. M.; Gould, E. S. Inorg. Chem. 1986, 25, 94.
Bose, R. N.; Rajasekar, N.; Thompson, D. M.; Gould, E. S. Inorg. Chem. 1986, 25, 94.
Bose, R. N.; Rajasekar, N.; Thompson, D. M.; Gould, E. S. Inorg. Chem.
1986, 25, 3349. Ghosh, S. K.; Bose, R. N.; Laali, K.; Gould, E. S. Inorg. Chem. Chem. 1986, 25, 4737. Ghosh, S. K.; Bose, R. N.; Gould, E. S. Inorg. Chem. 1987, 26, 899, 2684, 2688, 3722, and 1988, 27, 1620. (b) Ghosh, M. C.; Gould, E. S. Inorg. Chem. 1990, 29, 4258; 1991, 30, 491. Ghosh, M. C.;

Gelerinter, E.; Gould, E. S. Inorg. Chem. 1991, 30, 1039.
(6) Kemp, T. J. In Comprehensive Chemical Kinetics; Bamford, C. H., Tipper, C. F. H., Eds.; Elsevier: New York, 1972; Vol. 7, p 274.
(7) Espenson, J. H. Acc. Chem. Res. 1970, 3, 347.

(8) (a) Roček, J.; Westheimer, F. H.; Eschenmoser, A.; Moldovanyi, L.; Schreiber, J. Helv. Chim. Acta 1962, 45, 2554. (b) Watanabe, W.; Westheimer, F. H. J. Chem. Phys. 1949, 17, 61. Westheimer, F. H. Chem. Rev. 1949, 45, 419.

the oxidation of alcohols and carboxylates by H_2CrO_4 , where the electron spin resonance (ESR) signal of a tetragonally distorted d^1 species can be attributed to Cr(V). This Cr(V) species almost certainly contains coordinated alcoholate or carboxylate ligands. Hydrated Cr(IV) has not been observed directly, even though it has been invoked in many mechanisms¹⁰ as a transient which reacts rapidly with other species in the reaction mixture. Also, the reaction of $Cr(H_2O)_6^{3+}$ with strong oxidants¹¹ involves these same internediates.

In this work, we describe the preparation of aqueous Cr(IV) in the absence of stabilizing ligands. This species was discovered during an investigation of the catalytic reactions of the super-oxochromium(III) ion, $CrO_2^{2+,12}$ (Throughout this work, coordinated water molecules are not shown.) Cr(IV) reacts with Ph₃P with a rate constant of $(2.1 \pm 0.2) \times 10^3$ M⁻¹ s⁻¹ in 85% CH₃CN/H₂O (0.10 M HClO₄) at 25 °C to give Ph₃PO and Cr²⁺, which is trapped by O_2 to become CrO_2^{2+} . On this basis, and by analogy with the known Cr^{IV}=O unit in porphyrin chemistry,⁴ we have assigned to $Cr(IV)_{aq}$ the formula CrO^{2+} . We present evidence that this Cr(IV) species is the same as the proposed intermediate in the reaction of H_2CrO_4 with alcohols. The CrO^{2+} is stable enough (half-life 30 s in 1 M HClO₄) to use as a bulk reagent in mechanistic studies. The kinetics of the reactions of CrO²⁺ with various alcohols, aldehydes, and carboxylates are described, and a hydride-transfer mechanism common to all these reactions is proposed. Although much of the literature on Cr(IV) reactions is based on the assumption that Cr(IV) is exclusively a one-electron oxidant,^{13,14} we show that this is rarely the case. For reactions with organic substrates, a two-electron path is not only thermodynamically viable but unequivocally observed.

$$CrO^{2+} + RH_2 \rightarrow Cr^{2+} + R + H_2O$$
 (1)

Experimental Section

CrO²⁺ was usually prepared by syringe-injection of an air-free solution of Cr^{2+} (from Zn/Hg reduction of $Cr(H_2O)_6^{3+}$) into an acidic aqueous solution containing O_2 . At very low $Cr^{2+}:O_2$ ratios, ca. 0.05:1, the adduct

⁽¹⁾ Srinivasan, K.; Kochi, J. K. Inorg. Chem. 1985, 24, 4670.

⁽²⁾ Krumpolc, M.; Roček, J. J. Am. Chem. Soc. 1979, 101, 3206.

⁽⁹⁾ Mitewa, M.; Bontchev, P. R. Coord. Chem. Rev. 1985, 61, 241.
(10) Beattie, J. K.; Haight, G. P. Prog. Inorg. Chem. 1972, 93. Haight,
G. P.; Tracy, J. H.; Shakhashiri, B. Z. J. Inorg. Nucl. Chem. 1971, 33, 2169.
(11) Ogard, A. E.; Taube, H. J. Phys. Chem. 1958, 62, 357. Tong, J. Y.;

King, E. L. J. Am. Chem. Soc. 1960, 82, 3805.

 ^[12] Scott, S. L.; Bakac, A.; Espenson, J. H. Inorg. Chem. 1991, 30, 4112.
 (13) Roček, J.; Radkowsky, A. E. J. Am. Chem. Soc. 1973, 95, 7123.

⁽¹⁴⁾ Nave, P. M.; Trahanovsky, W. S. J. Am. Chem. Soc. 1970, 92, 1120.

 CrO_2^{2+} is formed quantitatively.¹⁵ The CrO_2^{2+} was identified and quantified by its intense and characteristic UV spectrum: $\epsilon_{290nm} = 3100$ \dot{M}^{-1} cm⁻¹, $\epsilon_{245nm} = 7000 M^{-1} cm^{-1.16}$ At higher Cr²⁺:O₂ ratios, for example 1:1, with efficient mixing in a stopped-flow jet, the CrO^{2+} is formed in ca. 30% yield (other products are nonoxidizing, low-absorbing Cr(III) species). At intermediate ratios, a mixture of CrO_2^{+} and CrO_2 is produced. The superoxo complex CrO_2^{2+} is stable for at least half an hour at room temperature under O2, and on this time scale does not react with any of the organic substrates studied here. In experiments where the product of the CrO^{2+} reaction is Cr^{2+} , it was necessary to work in the intermediate concentration regime (0.15 Cr^{2+}/O_2). Under these conditions, the Cr^{2+} product is trapped efficiently by oxygen, thus avoiding the autocatalytic consumption of CrO_2^{2+} by Cr^{2+} , eqs 1 and 2.¹²

$$CrO_2^{2+} + 2Cr^{2+} + H_2O \rightarrow CrO^{2+} + Cr(OH)_2Cr^{4+}$$
 (2)

Reactions of CrO²⁺ were monitored in three ways. Occasionally, the absorption of CrO²⁺ itself (λ 260 nm, $\epsilon = (5 \pm 1) \times 10^3$ M⁻¹ cm⁻¹, see below) was used. Many reactions were conducted in O2-saturated solutions. In these cases, the product Cr^{2+} (eq 1) was rapidly converted to CrO_2^{2+} , which was monitored at 290 or 240 nm. Some reactions were conducted by adding ABTS²⁻ (2,2'-azinobis(3-ethylbenzthiazoline-6sulfonate)) simultaneously with the organic substrate. The formation of ABTS $(\lambda 417 \text{ nm}, \epsilon = 3.47 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}; \lambda 645 \text{ nm}, \epsilon = 1.35 \times 10^4 \text{ m}^{-1}$ M^{-1} cm⁻¹)¹⁷ concurrent with substrate oxidation provided a convenient kinetic probe. Rate constants from the three methods agreed.

In a typical experiment, 0.2 mM Cr²⁺ was injected into O₂-saturated acidic solution (pH maintained by HClO₄, ionic strength by LiClO₄) containing at least a 10-fold excess of the appropriate organic substrate. Results were identical when the organic substrate was added after the Cr²⁺, or when equal volumes of 0.2 mM Cr²⁺ and 1.26 mM O₂ solutions containing the organic substrate were mixed in a Durrum stopped-flow spectrophotometer. The absorbance changes due to buildup of CrO_2^{2+} as CrO²⁺ reacted with the substrate were monitored either at the 290 or 245 nm maximum of CrO_2^{2+} . Temperature was controlled at 25.0 ± 0.2 °C by means of a thermostated cell-holder connected to a circulating water bath. All data were fit to a pseudo-first-order equation, since the rate of CrO_2^{2+} formation from the rapid¹⁶ reaction between Cr^{2+} and O_2 is governed by the rate of reaction 1. Thus $d[\text{CrO}_2^{2+}]/dt = k_1$ - $[CrO^{2+}][RH_2]$, and with $[RH_2]_0 \gg [CrO^{2+}]_0$, first-order kinetics are obeyed.

In contrast, the kinetic data in the presence of ABTS²⁻ fit a biexponential rate law, since ABTS²⁻ reacts with both CrO₂²⁺ and CrO² to form the intensely-colored radical anion ABTS⁻⁻. The CrO_2^{2+} is inevitably formed in experiments with all but the highest $Cr^{2+}O_2$ ratios. That is, reactions 3 and 4 occur simultaneously, such that the buildup of $ABTS^{*-}$ follows the rate law given in eq 5. Data were analyzed to

$$CrO^{2+} + ABTS^{2-} + H^+ \rightarrow CrOH^{2+} + ABTS^{--}$$
(3)

$$CrO_2^{2+} + ABTS^{2-} + H^+ \rightarrow CrO_2H^{2+} + ABTS^{--}$$
(4)

 $d[ABTS^{-}]/dt = k_3[ABTS^{2-}][CrO^{2+}] + k_4[ABTS^{2-}][CrO^{2+}]$ (5)

determine k_3 and k_4 , and the k_4 value agrees with that evaluated independently by mixing $ABTS^{2-}$ with a pure sample of CrO_2^{2+} . In the presence of substrate RH2, the observed rate constant for the slower phase, $k_{slow} = k_4 [ABTS^{2-}]$, is unchanged. The observed rate constant for the faster phase increases with $[R\tilde{H}_2]$ since CrO^{2+} is consumed in a parallel reaction with RH₂. Thus $k_{\text{fast}} = k_3[\text{ABTS}^{2-}] + k_1[\text{RH}_2]$.

In much of this work, CrO^{2+} was prepared by injection of Cr^{2+} into O_2 -saturated aqueous HClO₄ (0.02-1.0 M), as described above. In some cases it was prepared by mixing of Cr^{2+} and O_2 solutions in the stopped-flow apparatus, with one of the solutions containing the desired organic substrate. As reported earlier,¹⁸ CrO²⁺ is also made by three other reactions, eqs 2, 6, and 7, all anaerobic. As in the earlier work,

$$CrOOCr^{4+} + Cr^{2+} + H_2O \rightarrow CrO^{2+} + Cr(OH)_2Cr^{4+}$$
 (6)

$$TlOH^{2+} + Cr^{2+} \rightarrow Tl^{+} + CrO^{2+} + H^{+}$$
 (7)

enough experiments were done with these other sources of CrO²⁺ that we are confident the same oxochromium ion results from each, by virtue of identical reaction kinetics.

The ultraviolet spectrum of CrO²⁺ was obtained by mixing 0.26 mM O_2 and 0.3 mM Cr²⁺ in a Durrum stopped-flow apparatus equipped with

Figure 1. Difference spectra of CrO²⁺ formed by stopped-flow mixing of 0.3 mM Cr²⁺ and 0.26 mM O₂ in 1.0 M HClO₄. Time interval between spectra is 20 s. Spectra were obtained by difference from the spectrum at 60 s. The yield of CrO²⁺ is 15% based on total Cr. Path length was 2 cm.

Figure 2. Formation of CrO_2^{2+} (λ_{max} 290, 245 nm) from the reaction between 1 mM CH₃OH, 1.26 mM \overline{O}_2 , and 0.1 mM CrO²⁺, in 0.10 M HClO₄. Spectra were recorded at 10-s intervals in a 1-cm cell.

a rapid-scan monochromator. Extinction coefficients were obtained by adding ABTS²⁻ and measuring the amount of the intensely-colored radical anion ABTS*- formed.

The dissolved O2 concentration was calculated using the known solubility of oxygen in water at 25 °C under O₂ and air atmospheres.¹⁹ Diammonium 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) was purchased from Sigma and Aldrich. Some samples required recrystallization from hot water because an impurity reacts with the radical anion ABTS* in the presence of a large concentration (mM) of ABTS²⁻. Thallium(III) sulfate, CrO₃, NaHCO₂, NaHC₂O₄, and the various alcohols, aldehydes, and ethers were purchased from commercial sources and used as received. Solutions of HCHO were obtained by dissolving paraformaldehyde in warm 1 M HClO₄ and were standardized by chromotropic acid analy-CrOOCr4+ was prepared by a literature method²¹ and was sis.20 standardized spectrophotometrically ($\epsilon_{634nm} = 404 \text{ M}^{-1} \text{ cm}^{-1}$). Organic products were determined on an HP 5730A gas chromatograph equipped with a VZ-10 column.

Unless stated otherwise, the kinetic data were determined at 25.0 °C and 1.0 M ionic strength (HClO₄ + LiClO₄).

Results

Formation of CrO^{2+} . The reaction of Cr^{2+} with O_2 produces CrO_2^{2+} quantitatively only in the presence of a large (≥ 20 -fold) excess of O_2 . When O_2 is not in large excess, another short-lived oxidizing Cr species is formed which decays to nonoxidizing Cr products. We identified this short-lived species as oxochromium(IV) or CrO^{2+} . The reactions cited in eqs 2, 6, and 7 also yield CrO²⁺.

⁽¹⁵⁾ Brynildson, M. E.; Bakac, A.; Espenson, J. H. J. Am. Chem. Soc.

^{36, 52.}

⁽¹⁸⁾ Scott, S. L.; Bakac, A.; Espenson J. Am. Chem. Soc. 1991, 113, 7787.

⁽¹⁹⁾ Under 1 atm O₂, water contains 1.27 mmol/L dissolved O₂; under 1 atm air + water vapor, the concentration of O₂ is 0.26 mmol/L (Linke, W. F. Solubilities, Inorganic and Metal-Organic Compounds, 4th ed.; American Chemical Society: Washington, DC, 1965; Vol. II, p 1228. (20) Bricker C. E.; Johnson, H. R. Anal. Chem. **1945**, 17, 40. (21) Adams, A. C.; Crook, J. R.; Bockhoff, F.; King, E. L. J. Am. Chem.

Soc. 1968, 90, 5761.

Figure 3. Dependence of the pseudo-first-order rate constants for the oxidation of CH_3OH by CrO^{2+} on the concentration of CH_3OH : 1.26 mM O_2 , 0.10 M HClO₄, 0.90 M LiClO₄, 25.0 °C.

That the same species was produced in all three reactions was shown by conducting any one of the several reactions described subsequently with CrO^{2+} from an alternate source. This species is a fairly strong oxidant, as shown in subsequent work.

Spectrum of CrO²⁺. Stopped-flow mixing of 0.3 mM Cr²⁺_{aq} and 0.26 mM O₂ produces ~0.045 mM CrO²⁺. The difference spectrum, shown in Figure 1 relative to the absorbance after CrO²⁺ has decomposed, has a peak at 260 nm ($\epsilon = (5 \pm 1) \times 10^3$ L mol⁻¹ cm⁻¹) and a well-defined shoulder at 300 nm.

Reaction of CrO²⁺ with CH₃OH. The immediate addition of millimolar quantities of CH₃OH to O₂-saturated solutions containing 0.1 mM of CrO²⁺ causes the spectrum of CrO_2^{2+} to intensify, Figure 2.

The rate of formation of CrO_2^{2+} follows first-order kinetics, and the pseudo-first-order rate constants vary linearly with the concentration of CH₃OH at a given ionic strength, as shown in Figure 3. The plot has a nonzero intercept, 0.033 s⁻¹ at $\mu = 1.0$ M, which appears repeatedly throughout this work and is not a characteristic of CH₃OH in particular. The slope of the plot gives $k_8 = 52.2 \pm 1.4 \text{ Lmol}^{-1} \text{ s}^{-1}$ as the rate constant for the reaction between CrO²⁺ and CH₃OH, eq 8, followed by eq 9. The rate

$$CrO^{2+} + CH_3OH \rightarrow Cr^{2+} + HCHO + H_2O$$
(8)

$$Cr^{2+} + O_2 \rightarrow CrO_2^{2+}$$
(9)

constant decreases to $15.1 \pm 1.7 \text{ L} \text{ mol}^{-1} \text{ s}^{-1}$ upon deuteration of the carbon-hydrogen bonds, eq 10, for an isotope effect $k_{\text{H}}/k_{\text{D}}$ = 3.46. The rate constant for oxidation of CH₃OH is independent

$$CrO^{2+} + CD_3OH \rightarrow Cr^{2+} + DCDO + H_2O \qquad (10)$$

of [O₂], provided O₂ is in excess, and of [H⁺] in the range 0.01–1.0 M, but decreases significantly with decreasing ionic strength. In H₂O at $\mu = 0.10$ M, the rate constant is $k_8 = 22.7 \pm 0.6$ L mol⁻¹ s⁻¹. Rate constants were also determined for oxidation of CH₃OD in D₂O and CH₃OH in 6.3 M CH₃CN at 0.10 M ionic strength, with values of 23.8 ± 1.6 and 22.6 ± 1.6 L mol⁻¹ s⁻¹, respectively.

HCHO was identified as the organic product by chromotropic acid analysis. Quantitation was difficult under kinetic conditions in the presence of O_2 , because the inorganic product CrO_2^{2+} eventually oxidizes CH₃OH during its decomposition (by homolysis¹⁵ to form Cr^{2+} followed by reactions 2 and 8, which form a catalytic cycle). CrO^{2+} is the only intermediate in the decomposition reaction which oxidizes CH₃OH on these time scales. The yield of HCHO was determined by analyzing an aged solution of pure CrO_2^{2+} to which CH₃OH was added. The yield of HCHO was found to be 430% based on the initial concentration of CrO_2^{2+} , implying induced oxidation of CH₃OH by O_2 , eq 11.

$$O_2 + 2CH_3OH \xrightarrow{CrO_2^{st}} 2HCHO + 2H_2O$$
 (11)

Since there is a large concentration excess of CH₃OH compared to $[CrO^{2+}]$, the ratio [HCHO]/[CH₃OH] remains small under all kinetic conditions. The reactivity of HCHO toward CrO^{2+} has been determined independently (see below) and is comparable to that of CH₃OH. Therefore, CrO^{2+} reacts exclusively with

Figure 4. Kinetic trace showing the reaction of CrO^{2+} with 0.19 M CH_3OH in the presence of an insufficient amount of O_2 (0.13 mM). The mixture of CrO^{2+} and CrO_2^{2+} was generated by stopped-flow mixing of 0.08 mM Cr^{2+} with O_2 . The Cr^{2+} product from the reaction of CrO^{2+} with CH_3OH consumes CrO_2^{2+} autocatalytically. [HClO₄] = 0.10 M, 25 °C, path length = 2 cm.

 CH_3OH under conditions where CH_3OH is present in excess, and we conclude that the only product is HCHO.

Stopped-flow mixing of 0.3 mM Cr^{2+} with 1.2 mM O_2 in the presence of 0.06–0.6 M CH₃OH gives rise to first-order absorbance increases at 290 nm, identical to the traces obtained by syringe transfer of reagents. When the O₂ concentration was lowered to 0.26 mM, a biphasic trace appeared, Figure 4. The formation of CrO₂²⁺ from the reaction of CrO²⁺ with CH₃OH begins as before, but O₂ is quickly consumed. The Cr²⁺ product then reacts with the CrO₂²⁺, causing the absorbance to decrease autocatalytically.

The reaction of CrO^{2+} with CH_3OH can also be studied in the visible region at 417 or 610 nm in the presence of the kinetic probe ABTS²⁻ and excess O₂. Both CrO^{2+} and CrO_2^{2+} are formed in the stopped-flow mixing of Cr^{2+} and O₂, with or without CH_3OH , and both species oxidize ABTS²⁻ at an appreciable rate, as in eqs 3 and 4. The biphasic formation of ABTS^{*-} in the absence of CH_3OH gave $k_5 = (7.9 \pm 0.6) \times 10^4$ L mol⁻¹ s⁻¹ and $k_6 = (1.36 \pm 0.11) \times 10^3$ L mol⁻¹ s⁻¹ at 25 °C in 0.10 M H⁺. The product of reaction 4, the hydroperoxo species CrO_2H^{2+} , has been prepared independently¹² and does not oxidize ABTS²⁻ under these conditions.

When the reaction was conducted in the presence of CH₃OH, the rate constant for the faster phase of ABTS^{*-} formation increased, while the magnitude of the associated absorbance change decreased. The rate constant for the reaction of CrO²⁺ with CH₃OH was then obtained from the faster phase by use of the expression $-d[CrO^{2+}]/dt = (k_3[ABTS^{2-}] + k_8[CH_3OH])$ [CrO²⁺], yielding $k_8 = 22.4 \pm 2.9$ L mol⁻¹ s⁻¹ at 0.1 M H⁺. This compares well with the value 22.7 L mol⁻¹ s⁻¹ determined directly from the rate of CrO₂²⁺ formation.

Reaction of CrO^{2+} with Other Alcohols. For every alcohol shown in Table I except cyclobutanol, the reaction produced CrO_2^{2+} when conducted in the presence of O₂. The pseudo-first-order rate constants were derived in the same way as for CH₃OH by following the formation of CrO_2^{2+} in the presence of at least a 10-fold excess of the alcohol. The first-order rate constants were plotted against alcohol concentration. In each case, a significant nonzero intercept of 0.01–0.03 s⁻¹ appears in these plots. Significant isotope effects were found for CH₃CH₂OH ($k_H/k_D = 2.31$) and (C-H₃)₂CHOH ($k_H/k_D = 2.61$) upon deuterium substitution in all the carbon-hydrogen bonds. The ionic strength dependence of the first-order rate constants is shown for (CH₃)₂CHOH in Figure 5. Activation parameters were determined for the reactions of CH₃OH, CD₃OH, and (CH₃)₂CHOH from the temperature dependence of the rate constants (shown for (CH₃)₂CHOH in Figure 6) and are listed in Table II.

Figure 6) and are listed in Table II. The formation of CrO_2^{2+} is taken as evidence that Cr^{2+} is the immediate product of the reaction of CrO^{2+} with these alcohols. In the oxidation of neopentyl alcohol, the product solution was

Table I. Bimolecular Rate Constants for the Oxidation of Alcohols by CrO^{2+ a}

alcohol	$k/L \text{ mol}^{-1} \text{ s}^{-1}$	alcohol	$k/L \text{ mol}^{-1} \text{ s}^{-1}$
CH ₃ OH	52.2 ± 1.4	C ₆ H ₅ CH ₂ OH	56.0 ± 3.6
CD ₃ OH	15.1 ± 1.7	C ₆ H ₅ CH(OH)CH ₃	29.6 ± 5.6
CH ₃ CH ₂ OH	88.4 ± 4.4	(C ₆ H ₅) ₂ CHOH	10.5 ± 0.8
CD ₃ CD ₂ OH	41.5 ± 4.2	(4-CH ₃ O)C ₆ H ₄ CH ₂ OH	71.2 ± 3.6
(CH ₃) ₂ ČHOH	12.0 ± 0.4	(4-CH ₃)C ₆ H ₄ CH ₂ OH	65.6 ± 3.8
(CD ₃) ₂ CDOH	4.6 ± 0.2	(4-CF ₃)C ₆ H ₄ CH ₂ OH	60.1 ± 1.7
$CH_2 = CHCH_2OH$	100.7 ± 6.6	cyclobutanol	44.1 ± 1.2
CH ₃ (CH ₂) ₂ CH ₂ OH	43.8 ± 3.9	cyclopentanol	30.6 ± 0.6
CH ₃ CH ₂ CH(OH)CH ₃	41.4 ± 0.7	(CH ₃) ₃ CCH ₂ OH	39.0 ± 3.3

^aAll rate constants were measured at 25 °C in O₂-saturated aqueous 0.10 M HClO₄/0.90 M LiClO₄ or 1.0 M HClO₄. In each case, CrO^{2+} was generated by the reaction of Cr^{2+} with O₂, and for all but cyclobutanol, the reaction of CrO^{2+} with ROH was monitored using the increase in absorbance at 290 nm due to CrO_2^{2+} formation. For cyclobutanol, the loss of absorbance at 270 nm due to CrO^{2+} was monitored.

 Table II. Activation Parameters for the Oxidation of Organic Substrates by Hydride Transfer

		activation parameters			
oxidant	substrate	$\Delta H^*/kJ$ mol ⁻¹	$\Delta S^*/J$ $K^{-1} mol^{-1}$	ref	
CrO ²⁺	CH ₃ OH CD ₃ OH	34 ± 6 38 ± 7	-99 ± 20 -95 ± 21	this work this work	
	(CH ₃) ₂ CHOH cyclobutanol	33 ± 3 46 ± 1	-112 ± 14 -61 ± 2	this work this work	
Ru(bpy) ₂ pyO ²⁺	CH₃OH CD₃OH	58 ± 8 71 ± 8	-109 ± 25 -88 ± 20	33a 33a	
	CH ₃ CH ₂ OH C ₆ H ₅ CH ₂ OH	38 ± 3 24 ± 1	-167 ± 8 -159 ± 4	33a 33a	
Ru(trpy)(bpy)O ²⁺	C ₆ H ₅ CD ₂ OH (CH ₃) ₂ CHOH	23 ± 3 38 ± 4	-192 ± 8 -142 ± 17	33a 33b	
Ph ₃ C ⁺	CH ₃ CH ₂ OH (CH ₃) ₂ CHOH	70 60	-92 -109	34	
0.	200-		~		
		×			

Figure 5. Ionic strength dependence of the observed rate constant for the oxidation of 9 mM $(CH_3)_2CHOH$ by CrO^{2+} at 25 °C. Since there is no dependence of the rate constant on $[H^+]$, the ionic strength was changed by varying either $[HClO_4]$ or $[LiClO_4]$.

analyzed for HCHO, a product of the cleavage of the hydroxyneopentyl radical, eq 12. No HCHO was found. The yield of

$$(CH_3)_3CCHOH \rightarrow (CH_3)_3C^* + HCHO$$
(12)

the inorganic product CrO_2^{2+} does not depend on the ionic strength in the range 0.10-1.0 M.

Reaction of CrO^{2+} with Cyclobutanol. This reaction is unlike the reactions with all the other alcohols we studied in that it does not give rise to CrO_2^{2+} in the presence of excess O_2 . Also, the reaction is not autocatalytic in the presence of a limiting amount of O_2 . The reaction is characterized by an absorbance decrease in the ultraviolet region, corresponding to the loss of CrO^{2+} . First-order kinetic traces were obtained at 270 nm where CrO^{2+} absorbs significantly. The pseudo-first-order rate constants are linearly dependent on the concentration of cyclobutanol, giving a bimolecular rate constant of $44.1 \pm 1.2 \text{ Lmol}^{-1} \text{ s}^{-1}$ in 1.0 M H⁺ at 25 °C. The rate constant is independent of [H⁺] and ionic strength in the range 0.10–1.0 M. Activation parameters for the oxidation of cyclobutanol by CrO^{2+} are given in Table II.

Reaction of CrO^{2+} with HCHO and Pivaldehyde. The reaction of 0.1 mM CrO^{2+} with millimolar aqueous HCHO in the presence of O₂ also yields CrO_2^{2+} . The pseudo-first-order rate constants are linearly dependent on the concentration of HCHO, with an

Figure 6. Dependence of the bimolecular rate constant for the oxidation of $(CH_3)_2$ CHOH by CrO^{2+} on temperature. All measurements were made in a 1-cm spectrophotometer cell containing 0.10 M HClO₄/0.90 M LiClO₄ saturated with O₂. The inset shows a plot of ln (k/T) versus temperature, with slope $\Delta H^*/R = 4007 \text{ K}^{-1}$ and intercept $(\Delta S^*/R) + \ln (R/Nh) = 10.277$.

intercept of 0.029 s⁻¹ and a slope of 91.7 \pm 2.9 L mol⁻¹ s⁻¹ in 0.10 M H⁺ (μ = 1.0 M). The bimolecular rate constant is acid-independent in the range 0.10–1.0 M. Activation parameters are $\Delta H^* = 46.8 \pm 1.7$ kJ/mol and $\Delta S^* = -50 \pm 1.9$ J/K·mol. The formation of CrO₂²⁺ from CrO²⁺ and 0.6 mM HCHO is not observed in the presence of 1–10 mM Mn²⁺, a scavenger for CrO^{2+,10} Under these conditions an absorbance decrease rather than an increase was recorded at 290 nm. The reaction mixture containing Mn²⁺ developed an intense yellow color and an insoluble precipitate of MnO₂ regardless of whether HCHO was present or not.

The reaction of CrO^{2+} with pivaldehyde, $(CH_3)_3CCHO$, does not yield CrO_2^{2+} . The reaction was studied by monitoring the loss of CrO^{2+} at 260 nm. The second-order rate constant is 37.1 \pm 6.4 L mol⁻¹ s⁻¹ at 25 °C and is acid-independent. CH₄, isobutane, and isobutene were identified as the major organic products by gas-phase chromatography. The other expected organic product, acetone, was not determined.

Reactions of CrO²⁺ with HCO₂H and H₂C₂O₄. These reactions give CrO₂²⁺ as the inorganic product in the presence of O₂, regardless of the order of mixing of reagents. At a 1:1 Cr²⁺:O₂ ratio, the formation of CrO₂²⁺ is followed by an autocatalytic decrease in absorbance, similar to that reported above for the alcohol reactions. When O₂ is in large excess over Cr²⁺, the increase in absorbance at 290 nm is pseudo first order for all concentrations of excess HCO₂H (0.35–2.8 mM) and [H₂C₂O₄] (0.010–0.024 M). At higher H₂C₂O₄ concentrations, mixed first- and second-order traces were obtained. The bimolecular rate constants for both reactions are inversely acid-dependent in the range 0.05 M < [H⁺] < 1.0 M. The rate law was resolved into acid-independent and acid-dependent terms using the known acid-base equilibria between the carboxylic acids H₂A and their conjugate bases HA⁻

$$k_{obs} = k [H_2A] + k'' [HA^-] + k_d = \frac{k [H^+] + k'' K_a}{K_a + [H^+]} [A]_{total} + k_d (13)$$

where $K_a = [HA^-][H^+]/[H_2A]$ and $k_d = 0.022 \text{ s}^{-1}$ is the intercept of the plot of k_{obs} versus total carboxylic acid concentration. For HCO₂H, $pK_a = 3.53^{22}$ leads to simplification of the rate law, since $[H^+] \gg K_a$. Thus

$$k_{\rm obs} - k_{\rm d} = \left(k' + \frac{k'' K_{\rm a}}{[{\rm H}^+]}\right) [{\rm A}]_{\rm total} \tag{14}$$

A plot of $(k_{obs} - k_d)/[A]_{total}$ versus $[H^+]^{-1}$ is linear with slope $k''K_a = 2.03 \pm 0.10 \text{ s}^{-1}$, giving $k'' = (6.68 \pm 0.33) \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ as the bimolecular rate constant for the reaction of HCO_2^- with CrO^{2+} . The intercept yields $k' = 11.6 \pm 1.1 \text{ Lmol}^{-1} \text{ s}^{-1}$.

For $H_2C_2O_4$, $pK_{a1} = 1.04$ and $pK_{a2} = 3.55$,²² so the assumption made in eq 14 is not valid. Therefore, the acid-dependent rate constants k_{obs} were fitted to the complete rate law of eq 13 using a nonlinear least-squares fitting routine and allowing k', k'', and K_a to vary. The fitting routine reproduced the literature value for $K_a = 0.093$ and gave a negligible value for $k' = 68 \pm 81$ L mol⁻¹ s⁻¹. With the k' term assumed to be zero, the rate law simplifies to eq 15. A least-squares fit to eq 15 gave k'' = (2.23)

$$k_{\rm obs} - k_{\rm d} = \frac{k'' K_{\rm a}}{K_{\rm a} + [{\rm H}^+]} [{\rm A}]_{\rm total}$$
 (15)

 \pm 0.25) × 10³ L mol⁻¹ s⁻¹ as the bimolecular rate constant for the oxidation of HC₂O₄⁻ by CrO²⁺. Although small amounts of C₂O₄²⁻ may be present in solution, the kinetic data do not require the inclusion of a term in [H⁺]⁻², therefore the reaction of C₂O₄²⁻ with CrO²⁺ is unimportant in the pH range used.

Reaction of CrO^{2+} with (CH_3CH_2)_2O. CrO_2^{2+} is formed from CrO^{2+} by its reaction with $(CH_3CH_2)_2O$ in the presence of O_2 . The pseudo-first-order rate constants vary linearly with the concentration of $(CH_3CH_2)_2O$, which is the excess reagent. The bimolecular rate constant is 4.45 ± 0.28 L mol⁻¹ s⁻¹ in 0.10 M H⁺ at 25 °C. Tetrahydrofuran does not react with CrO^{2+} under these conditions.

Generation of Air-Free CrO^{2^+} from $CrO_2^{2^+}$ or $CrOOCr^{4^+}$. Stopped-flow mixing of 0.050 mM argon-saturated $CrO_2^{2^+}$ with a solution containing 0.025 mM Cr^{2^+} and 0.3–2 mM ABTS²⁻ in 0.10 M H⁺ causes a biphasic formation of ABTS⁻⁻ at 417 nm. The rate constant for the fast phase is $(8.4 \pm 1.2) \times 10^4$ L mol⁻¹ s⁻¹, in agreement with the rate constant for reaction 3 reported above in the presence of O_2 , 7.9×10^4 L mol⁻¹ s⁻¹. When CH₃OH was also present, the rate constant of the fast phase was higher due to reaction 8, however, the absorbance change was smaller because reaction 8 does not contribute to the absorbance increase and because some of the Cr^{2^+} product reduces ABTS⁻⁻.

Mixing of 0.0275 mM air-free CrOOCr⁴⁺ and 0.275-2.06 mM ABTS²⁻ in 0.10 M H⁺ was done at 25 °C in the stopped-flow apparatus. The rate of formation of ABTS⁻⁻ was recorded at 417 nm and fitted to a first-order kinetic equation. The pseudo-first-order rate constants were plotted against the [ABTS²⁻], giving a straight line with slope $k = 802 \pm 47 \text{ L} \text{ mol}^{-1} \text{ s}^{-1}$ and negligible intercept. When the ABTS²⁻ solution contained Cr²⁺, a biphasic absorbance increase was observed. The rate constant for the slower phase corresponds to the reaction of the remaining CrOOCr⁴⁺ with ABTS²⁻, while the rate constant measured for the faster phase, $7.1 \times 10^4 \text{ L} \text{ mol}^{-1} \text{ s}^{-1}$, corresponds to the reaction between ABTS²⁻ and CrO²⁺ formed in mixing time. The total absorbance change in the presence of Cr²⁺, due to consumption of some CrO²⁺ by Cr²⁺ during mixing time, eq 16.

$$CrO^{2+} + Cr^{2+} + H_2O \rightarrow Cr(OH)_2Cr^{4+}$$
 (16)

Generation of CrO^{2+} from Cr^{2+} and $TlOH^{2+}$. A solution of 0.22 mM $TlOH^{2+}$ in 0.10 M H⁺ was saturated with argon, then 0.22 mM Cr^{2+} was injected. Then an equal volume of O₂-saturated 0.10 M HClO₄ containing 0.37–2.34 mM CH₃OH was quickly mixed with the CrO²⁺-containing solution. The increase in ab-

Wavelength/nm

Figure 7. Formation of CrO_2^{2+} (λ_{max} 290, 245 nm) during the oxidation of 0.21 M (CH₃)₂CHOH by 0.069 M HCrO₄⁻ (λ_{max} 345, 255 nm). The solution contained 2.0 M HClO₄ and 1.26 mM O₂. Spectra were recorded at 4-min intervals in a 1-cm cell.

Table III. Yield of CrO_2^{2+} from the Oxidation of 2-Propanol by $HCrO_4^{-a}$

[HCrO ₄ -]/mM yield of CrO_2^{2+}/mM^b		% yield of CrO ₂ ²⁺	
0.364	0.099 (0.091)	28	
0.069	0.042 (0.042)	64	
0.042	0.032 (0.030)	76	
0.016	0.013 (0.014)	81	

^aConcentrations of HCrO₄⁻ and CrO₂²⁺ were determined spectrophotometrically. Solutions contained 2 M HClO₄, 1.26 mM O₂, and 0.23 M 2-propanol at 25 °C. ^bValues in parentheses are predicted yields from numerical integration using the program KINSIM. Rate constants used in the simulation were $k_{29} = 2 \times 10^9$ L mol⁻¹ s⁻¹, $k_9 =$ 1.6×10^8 L mol⁻¹ s⁻¹, $k_{-9} = 2.5 \times 10^{-4}$ s⁻¹, and $k_{17} = 8 \times 10^8$ L mol⁻¹

sorbance at λ 290 nm yielded $k_8 = 29.3 \pm 0.8$ L mol⁻¹ s⁻¹, in agreement with the values determined by other CrO²⁺-generating methods at 0.10 M ionic strength. At the end of the reaction, the UV spectrum shows clearly the 290-nm peak of CrO₂²⁺, produced in ca. 15% yield based on initial [Cr²⁺]. The low yield is again attributed to the loss of CrO²⁺ in reaction 16, which competes effectively with reaction 7 ($k_7 = 2 \times 10^6$ L mol⁻¹ s⁻¹).²³ A blank experiment, in which all components except CH₃OH were mixed as described above, showed no formation of CrO₂²⁺. TIOH²⁺ does not oxidize CH₃OH under these conditions.

Intermediacy of CrO^{2+} in the Reaction of $HCrO_4^-$ with $(CH_3)_2CHOH$. An O_2 -saturated solution containing 0.069 mM $HCrO_4^-$ in 2.0 M $HClO_4$ was allowed to react with 0.21 M $(CH_3)_2CHOH$. The peak in the visible spectrum at 345 nm due to $HCrO_4^-$ decreased in intensity over a period of 5 min, while new peaks at 290 and 245 nm grew in, Figure 7. The final spectrum was that of CrO_2^{2+} . The percent yield of CrO_2^{2+} depends on the initial concentration of $HCrO_4^-$, as shown in Table III, and approaches 100% as the concentration of $HCrO_4^-$ is lowered.

Discussion

Reaction of Cr^{2+} with O_2. This is a complex, multistep reaction. The first step was identified by pulse radiolysis¹⁶ as formation of a 1:1 adduct between O_2 and Cr^{2+} . The adduct, CrO_2^{2+} , was described as a superoxochromium(III) because of its electronic spectrum, its kinetic stability, and its thermodynamic stability constant.¹⁵ Subsequent steps in the reduction of O_2 by Cr^{2+} are not well-established, because they are extremely rapid. For example, the reaction of CrO_2^{2+} with Cr^{2+} is too rapid for conventional stopped-flow mixing, although an estimate of the rate constant (8 × 10⁸ L mol⁻¹ s⁻¹) was obtained from analysis of the homolysis kinetics of CrO_2^{2+} .¹⁵ The ultimate product of the Cr^{2+} + O_2 reaction is known to be $Cr(OH)_2Cr^{4+}$,²⁴ formed when Cr^{2+}

⁽²²⁾ Martell, A. E.; Smith, R. M. Critical Stability Constants; Plenum: New York, 1977; Vol. 3, pp 1 and 92.

⁽²³⁾ Dulz, G. E. Ph.D. Thesis, Columbia University, 1963.

enters the coordination sphere of Cr(IV) and is then oxidized. After electron transfer, both metal centers become Cr(III), in which the coordination spheres are frozen. Therefore the bis- μ hydroxo dimer is produced, rather than $Cr(H_2O)_6^{3+}$. One proposal¹⁵ for the complete mechanism is shown in Scheme I, although we will now revise certain features of it.

Scheme I

$$Cr^{2+} + O_2 \rightleftharpoons CrO_2^{2+} \tag{9}$$

$$CrO_{2}^{2+} + Cr^{2+} \rightarrow CrOOCr^{4+}$$
(17)

 $CrOOCr^{4+} + Cr^{2+} + H_2O \rightarrow Cr(OH)_2Cr^{4+} + CrO^{2+}$ (6)

$$CrO^{2+} + Cr^{2+} + H_2O \rightarrow Cr(OH)_2Cr^{4+}$$
 (16)

Both CrOOCr⁴⁺ and CrO²⁺ are proposed intermediates in the oxidation of Cr^{2+} by O₂, and both are now known in other reactions as well. Since k_{17} is very large, reaction 17 competes with 9 when the concentrations of CrO_2^{2+} and O_2 are comparable. However, no real evidence has ever been found in this or in previous work for the intermediacy of CrOOCr⁴⁺. Therefore, we must consider that (a) $CrOOCr^{4+}$ is not stable enough to be observed or isolated, (b) $CrOOCr^{4+}$ reacts with Cr^{2+} much more rapidly than CrO_2^{2+} does, or (c) CrOOCr⁴⁺ is not formed. The first option is ruled out by the independent preparation²¹ of CrOOCr⁴⁺ by the reaction of CrO_3 and H_2O_2 , which demonstrated that the $CrOOCr^{4+}$ is stable for several minutes at room temperature. It also has a characteristic and fairly intense UV-visible spectrum. The second option seems unlikely because the $Cr^{2+} + CrO_2^{2+}$ reaction is already so fast as to be nearly diffusion-controlled, and the reduction of CrOOCr⁴⁺ by Cr²⁺ could not be significantly faster. In fact, it may be much slower if the sluggishness of the reaction between Cr^{2+} and H_2O_2 is any guide.²⁵ The last option seems the most likely then.

The formation of the other intermediate, CrO²⁺, may be direct, as in

$$CrO_2^{2+} + Cr^{2+} \rightarrow 2CrO^{2+}$$
 (18)

or indirect, via some other intermediate, for example Cr^VO³⁺

$$CrO_2^{2^+} + Cr^{2^+} + H^+ \rightarrow CrO^{3^+} + CrOH^{2^+}$$
 (19)

$$CrO^{3+} + Cr^{2+} \rightarrow CrO^{2+} + Cr^{3+}$$
 (20)

Our observation that the CrO²⁺ generated independently by the reaction of Cr^{2+} with CrO_2^{2+} in the absence of oxygen reacts with ABTS²⁻ with the essentially the same rate constant as the intermediate in the reaction of Cr^{2+} with O₂ supports our contention that the same reaction in both systems gives rise to CrO^{2+} . The CrO²⁺ so formed oxidizes alcohols, aldehydes, and some carboxylates, as shown in this work. Aged solutions of initially pure CrO₂²⁺ which contain CH₃OH were also found to contain HCHO, even though CrO_2^{2+} does not react with CH₃OH directly. This observation is easily accounted for by reactions 18 or 19 and 20, since homolysis of CrO_2^{2+} produces the Cr^{2+} needed to produce CrO²⁺.

Our belief that the oxidant in these reactions contains Cr in the unusual +4 oxidation state, and that this species undergoes two-electron reduction to Cr2+, results from the following reasoning. We consider the possible oxidizing Cr species which could be present in the reaction mixture:

(a) Cr^{VI} would be present as HCrO₄ under our concentration and pH conditions. This can be detected spectrophotometrically by its absorption maximum at λ 345 nm ($\epsilon = 1.4 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$), and it was not observed. Although HCrO₄ is known to oxidize alcohols, the reaction is very slow at pH 1. The intermediate we have studied is certainly a more facile oxidant than HCrO₄.

(b) Aqueous Cr^V is believed to oxidize alcohols by a two-electron path and/or disproportionate.9 If it reacts directly with the alcohol, the products must be Cr(III) and a ketone/aldehyde. No combination of these products can possibly give rise to CrO_2^{2+} . If Cr^{V} disproportionates, one product must be $HCrO_{4}$, which was not observed.

(c) Cr^{IV} is believed to be a strong oxidant that reacts with a variety of alcohols and other organic substrates. These reactions have traditionally been written as one-electron hydrogen-atom abstractions²⁶ because of the kinetic isotope effects and the stability of the Cr(III) product. However, if Cr^{3+} and a carbon-centered radical are the immediate products of the reaction, then Cr³⁺ must be reduced to Cr^{2+} by the radical in order to form the ultimate product, CrO_2^{2+} . While it is thermodynamically possible for a hydroxyalkyl radical to reduce $Cr(H_2O)_6^{3+}$

$$Cr(H_2O)_6^{3+} + e^- \rightarrow Cr^{2+}_{aq} \qquad E^\circ = -0.416 \text{ V}$$
 (21)

$$CH_2O + H^+ + e^- \rightarrow CH_2OH \qquad E^\circ = -0.83 V^{27}$$
 (22)

this reaction has been shown not to occur²⁸ because of the reluctance of $Cr(H_2O)_6^{3+}$ to undergo outer-sphere electron transfer and the substitutional inertness of $Cr(H_2O)_6^{3+}$, which prohibits an inner-sphere path. We conclude therefore that the only possible way to obtain Cr^{2+} , and consequently CrO_2^{2+} , is by a two-electron reduction of a Cr(IV) species.

Reaction of CrO^{2+} with Alcohols. The rate constants for the reaction of CrO²⁺ with various alcohols are remarkable in their uniformity. The reactivity of alcohols toward one-electron oxidants such as Ce(IV) varies widely according to the ease of formation of the corresponding hydroxyalkyl radicals: the range of second-order rate constants spans several orders of magnitude.²⁹ For the reactions studied here, not only is the range of rate constants relatively small but the reactivity order is unconventional. CH₃OH is invariably more difficult to oxidize than (CH₃)₂CHOH by a one-electron (hydrogen-atom-abstraction) path: DH°298 (R-H) = 95.9 \pm 1.5 kcal/mol for CH₃OH; 90.7 \pm 1.1 kcal/mol for $(CH_3)_2CHOH$ (DH° is the bond dissociation energy for the gas-phase reaction $RH \rightarrow R^{\circ} + H^{\circ}$).³⁰ However, the thermodynamic properties of the two-electron oxidations are very similar: ΔH°_{f} (ketone) - ΔH°_{f} (alcohol) = 17.0 kcal/mol for CH₃OH and 16.75 kcal/mol for (CH₃)₂CHOH.³¹ Also, the formation of the diphenylhydroxymethyl radical is thermodynamically more favorable than the formation of the phenylhydroxymethyl radical because of the additional benzylic stabilization, yet benzyl alcohol reacts with CrO²⁺ faster than does diphenylmethanol. The lack of a significant para-substituent effect in the oxidation of substituted benzyl alcohols also implies that benzyl radicals are not formed in the oxidation process. Hammett ρ values for processes involving these radicals are generally large and negative, for example -2.0 with Ce(IV) as the oxidant.¹⁴ Therefore we conclude that the oxidation of these alcohols by CrO²⁺ does not proceed by alkyl radical formation.

Instead, we propose that the reactions with alcohols take place by a concerted, two-electron hydride transfer mechanism

$$CrO^{2+} + R_2CHOH \rightarrow [CrO...H...CR_2OH]^{2+} \rightarrow CrOH^+ + R_2CO + H^+ (23)$$

Although this mechanism has not received much attention in the

⁽²⁴⁾ Ardon, M.; Plane, R. A. J. Am. Chem. Soc. 1959, 81, 3197. Ko-laczkowski, R. W.; Plane, R. A. Inorg. Chem. 1964, 3, 322.

⁽²⁵⁾ Bakac, A.; Espenson, J. H. Inorg. Chem. 1983, 22, 779.

⁽²⁶⁾ Rahman, M.; Roček, J. J. Am. Chem. Soc. 1971, 93, 5455, 5462. (27) Based on $E^{\circ}(^{\circ}CH_{2}OH/CH_{3}OH) = 1.29 V$ (Endicott, J. F. In Concepts of Inorganic Photochemistry; Adamson, A. W., Ed.; Wiley: New York, 1975; p 88) and $E^{\circ}(CH_{2}O/CH_{3}OH) = 0.232 V$ (Galus, Z. In Standard Potentials in Aqueous Solution; Bard, A. J., Ed.; Dekker: New York, 1985; p 197)

⁽²⁸⁾ The reaction between $Cr(H_2O)_6^{3+}$ and $C(CH_3)_2OH$ is so slow (k = 5.6×10^2 L mol⁻¹ s⁻¹) that it is barely detectable (Muralidharan, S.; Espenson, J. H. *Inorg. Chem.* **1984**, *23*, 636). The reduction of $Cr(H_2O)_6^{3+}$ by CO_2^{-1} was not observed (Ellis, J. D.; Green, M.; Sykes, A. G.; Buxton, G. V.; Sellers, R. M. J. Chem. Soc., Dalton Trans. 1973, 1724).

⁽²⁹⁾ Wiberg, K. B. In Oxidation in Organic Chemistry; Academic: New York, 1965; Part A. Meyer, K.; Roček, J. J. Am. Chem. Soc. 1972, 94, 1209. Littler, J. S. J. Chem. Soc. 1959, 4135.

 ⁽³⁰⁾ Golden, D. M.; Benson, S. W. Chem. Rev. 1969, 69, 125.
 (31) Cox, J. D.; Pilcher, G. Thermochemistry of Organic Compounds; Academic: London, 1970; pp 200-202.

literature, it would seem to be thermodynamically preferable to the previously-proposed hydrogen-atom transfer reaction, eq 24.

$$CrO^{2+} + CH_3OH \rightarrow CrOH^{2+} + CH_2OH$$
 (24)

The additional energy required to form CrOH⁺ rather than CrOH²⁺ is more than compensated by the formation of the stable aldehyde (or ketone) instead of the highly-energetic hydroxyalkyl radical. The standard potential for the Cr(IV)/Cr(III) couple is unknown, although estimates as high as 2.0 V have been made.³² However, the difference of free energies, $\Delta G^{\circ}_{23} - \Delta G^{\circ}_{24}$, does not depend on this potential. Taking into account the protonation states of the chromium products, CrOH⁺ and CrOH²⁺, we estimate the free energy difference as -28 kJ/mol. Therefore the hydride transfer path is more favorable than the hydrogen-atom transfer path by 28 kJ/mol. This difference is not so large, however, as to preclude the hydrogen-atom transfer path when an especially stable alkyl radical is formed. Other possible mechanisms are proton-coupled electron transfer via the hydroxyl group, ruled out on the basis of the absence of a solvent isotope effect, and outer-sphere electron transfer which is unlikely because of the high energies of the protonation states of both products (CrO⁺ and ROH⁻) which would result.

The moderate primary isotope effects (CH₃OH/CD₃OH, 3.46; C_2H_5OH/C_2D_5OH , 2.13; C_3H_7OH/C_3D_7OH , 2.61) support the direct involvement of the carbon-hydrogen bond in the rate-determining step. The effects are not as large as for the Ru- $(bpy)(py)O^{2+}$ oxidation of alcohols,³³ which range from k_H/k_D = 9 for CH₃OH/CD₂OH to 50 for C₆H₅CH₂OH/C₆H₅CD₂OH and for oxidation by RuO₄ $(k_{\rm H}/k_{\rm D} = 4.6 \pm 0.2$ with 2propanol-2-d)³⁴ which are all claimed to proceed by hydride mechanisms. Isotope effects are smaller for the known hydride transfers between Ph₃C⁺ and (CH₃)₂CHOH ($k_{\rm H}/k_{\rm D}$ = 1.84) and HCO_2^- ($k_{\rm H}/k_{\rm D}$ = 2.5).³⁵ Quantum mechanical tunneling has been invoked to explain the largest primary isotope effects. However, even the magnitude of the smaller isotope effects depends strongly on the geometry of the transition state, being greatest when the C-H-O system is linear. Since the RuN_5O^{2+} complexes are substitutionally inert, and there is little likelihood of coordination-sphere expansion, the transition state for hydride abstraction is probably linear. However, MO analysis³⁶ has shown that the activation energy for hydride transfer from methanol to the oxo ligand of RuN_5O^{2+} would be substantially lowered by prior coordination of the substrate to the metal via the hydroxylic oxygen. Such an intermediate in the CrO²⁺ reaction with CH₃OH would have the following structure:

Formation of a side-on hydrogen bond rather than a linear hydrogen bond minimizes the repulsion between the C-H bond and the oxo lone pair. The cyclic intermediate will certainly exhibit smaller isotope effects than a linear transition state. Since Cr(IV) is substitutionally labile,¹¹ it is plausible that alcohols, aldehydes, and carboxylic acids coordinate to CrO²⁺ before being oxidized. Analogous esters have been identified in the reactions between HCrO₄⁻ and alcohols in nonaqueous solvents.⁸ Prior coordination may explain why alcohols that are sterically hindered react more slowly (e.g. $(CH_3)_2$ CHOH vs CH_3CH_2 OH and $(C_6H_5)_2$ CHOH vs C₆H₅CH₂OH).

The intercepts in all the plots of k_{obs} versus [ROH] are small, reproducible, and do not depend in any apparent way on the nature

of the alcohol. We believe that this feature, a CrO²⁺-consuming process with a first-order rate constant of ca. 0.030 s⁻¹ in 1.0 M HClO₄ and 0.015 s⁻¹ in 0.10 M HClO₄, represents the spontaneous decomposition of CrO²⁺. If alcohol addition to the CrO²⁺-containing solution was delayed by a few minutes, no CrO_2^{2+} was formed. Both observations are easily explained if CrO²⁺ decomposes on this time scale. We have not yet fully explored the products and mechanism of this side reaction. A likely possibility is bimolecular disproportionation of CrO²⁺, ultimately yielding $HCrO_4^{-}$ and Cr^{3+} . Further studies of this reaction are in progress.

The substantial ionic strength effect for the reaction of CrO²⁺ with alcohols was unexpected, since one of the reactants is uncharged. We do not have a satisfactory explanation for this phenomenon at present. We speculate that the strong trans-labilizing effect of the oxo group induces an equilibrium between five- and six-coordinate forms of the $(H_2O)_n CrO^{2+}$ ion, n = 4 or 5, and that the ratio of the two forms of CrO^{2+} is affected by variations in ionic strength.

Activation Parameters. Values are shown in Table II for the oxidations of CH₃OH, CD₃OH, (CH₃)₂CHOH, and cyclobutanol by CrO²⁺. Parameters for other reactions known to be hydride transfers are also shown in Table II for comparison. Hydride transfers are generally characterized by positive values of ΔH^* and large negative values of ΔS^* . The latter have been attributed to the strict orientational requirements for hydride transfer. In the CrO^{2+} system, collinearity is not required, but formation of a complex between CrO²⁺ and ROH and achievement of the cyclic transition state would certainly contribute to a large negative value of ΔS^* .

Reaction of HCrO_4^- with Alcohols and Cr^{2+}. The currently accepted mechanism²⁶ for the oxidation of alcohols by HCrO₄involves Cr(IV), but not Cr²⁺, as in Scheme II. However, CrO_2^{2+}

Scheme II

 $HCrO_4^- + R_2CHOH \rightarrow Cr^{IV} + R_2CO + 2H^+$ (25)

$$Cr^{IV} + R_2CHOH \rightarrow Cr^{3+} + R_2\dot{C}OH + H^+$$
 (26)

$$HCrO_{4}^{-} + R_{2}\dot{C}OH \rightarrow Cr^{V} + R_{2}CO + H^{+}$$
(27)

$$2Cr^{V} \rightarrow HCrO_{4}^{-} + Cr^{1V}$$
 (28)

formation during the oxidation of (CH₃)₂CHOH by HCrO₄⁻ requires the intermediacy of Cr^{2+} . The variation in the yield of CrO_2^{2+} can reasonably be ascribed to a competition between $HCrO_4^-$ and O_2 for Cr^{2+} , as in eqs 29 and 9. The rate constant

$$Cr^{2+} + HCrO_4^{-} \rightarrow Cr^{3+} + Cr^V$$
(29)

 k_{29} is too large to measure using conventional stopped-flow techniques.⁶ Using the known value of $k_9 = 1.6 \times 10^8 \text{ L mol}^{-1}$ s⁻¹,¹⁵ rate constant k_{29} was derived from the yields of CrO_2^{2+} in Table III by eq 30:37

$$\frac{k_{29}}{k_9} = \frac{[O_2] \ln ([HCrO_4^-]_0/[CrO_2^{2^+}]_\infty)}{[CrO_2^{2^+}]_\infty}$$
(30)

The derived value for k_{29} is $(2.0 \pm 0.6) \times 10^9$ L mol⁻¹ s⁻¹ in 2.0 M HClO₄. The yields of CrO_2^{2+} are well predicted by kinetic simulation using this value for k_{29} (see Table III). Because the yield of CrO₂²⁺ approaches 100% as the concentration of HCrO₄⁻ decreases, we rule out oxidation of CrO2+ by HCrO4-, a reaction which has been proposed in the literature¹⁰ even though it is thermodynamically uphill. The possible disproportionation^{10,38} of CrO²⁺ also does not seem important in the presence of a large excess of alcohol.

The two-electron reaction of CrO²⁺ with aliphatic alcohols is incorporated into Scheme III, which we believe should supersede the model in Scheme II. The precise formula of the Cr^V in-

⁽³²⁾ Csanyi, L. J. In Comprehensive Chemical Kinetics; Bamford, C. H., (32) Csally, L. 3. III Completionate Work, 1972; Vol. 7, p 537.
 (33) (a) Roecker, L.; Meyer, T. J. J. Am. Chem. Soc. 1987, 109, 746. (b) Thompson, M. S.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4106.

 ⁽³⁴⁾ Lee, D. G.; van den Engh, M. Can. J. Chem. 1972, 50, 2000.
 (35) Bartlett, P. D.; McCollum, J. D. J. Am. Chem. Soc. 1956, 78, 1441.

⁽³⁶⁾ Cundari, T. R.; Drago, R. S. Inorg. Chem. 1990, 29, 3904.

⁽³⁷⁾ Bunnett, J. F. In Investigations of Rates and Mechanisms of Reac-tions, 3rd ed.; Lewis, E. S., Ed.; Wiley: New York, 1974; Part 1, p 159.

⁽³⁸⁾ Klaning, U. K. J. Chem. Soc., Faraday Trans. 1 1976, 73, 434.

Scheme III

$$HCrO_{4}^{-} + R_{2}CHOH + 3H^{+} \rightarrow CrO^{2+} + R_{2}CO + 3H_{2}O$$
(25)

$$CrO^{2+} + R_{2}CHOH \rightarrow Cr^{2+} + R_{2}CO + H_{2}O \qquad (31)$$

$$HCrO_4^- + Cr^{2+} \rightarrow Cr^V + Cr^{3+}$$
(29)

$$2Cr^{V} \rightarrow HCrO_{4}^{-} + CrO^{2+}$$
(28)

termediate is unknown. Scheme III does not contradict previous observations (no polymerization of acrylonitrile and no kinetic effect of O_2),³⁹ because radicals are not produced and Cr^{2+} reacts with $HCrO_4^-$ even more rapidly than it does with O_2 .

Oxidation of 1,2-Diarylethanols and Cyclobutanol. The presence of organic oxidative cleavage products when HCrO₄⁻ oxidizes a 1,2-diaryl- or 1,2-arylalkylethanol,¹⁴ eq 32, or cyclobutanol,⁴⁰ eq 33, has been interpreted as evidence for a one-electron oxidation by CrO²⁺. Oxidative cleavage is characteristic of one-electron

$$ArCH(OH)CH_2Ar' \xrightarrow{HCrO_r} ArC(O)CH_2Ar' + (ArCHO + Ar'CH_2OH) (32)$$

oxidants such as Ce(IV).⁴⁰ In previous work on Cr(IV) oxidations,³⁹ cyclobutanol was the only alcohol studied which did not show a primary isotope effect, leading the authors to conclude that C-C bond cleavage is rate-determining. In the present study, cyclobutanol again behaves differently from all the other alcohols, because its reaction with CrO^{2+} does not yield Cr^{2+} . Also, the activation parameters for the cyclobutanol reaction are different, with larger ΔH^* and smaller ΔS^* compared to the values in other alcohol reactions, Table II.

In order to reconcile these observations with the proposed mechanism in eq 23, we consider two alternatives. Oxidative cleavage may result from a two-electron process; such reactions have been documented⁴¹ but only when especially stable organic cations are formed. Two-electron oxidative cleavage of cyclobutanol would be unprecedented. Alternately, the CrO²⁺ may be capable of either one-electron or two-electron oxidation, depending on the organic reactant. For simple primary and secondary alcohols, and even benzylic alcohols, formation of Cr²⁺ instead of Cr³⁺ is less expensive than production of alkyl radicals and is favored by the stability of the aldehyde or ketone products. If the product ketone would be highly strained, as in the case of cyclobutanone, or if the potential alkyl radical can be stabilized by multiple benzylic interactions, then Cr³⁺ and a hydroxyalkyl radical are formed instead. The change in mechanism is signaled by a change in the measured activation parameters, since hydrogen-atom transfer reactions usually have larger ΔH^{\dagger} and smaller ΔS^* values than do hydride transfer reactions.³¹ We submit that cleavage of cyclobutanol by a given oxidant does not indicate that all reactions of that oxidant are one-electron processes, as was previously suggested.⁴⁰ Indeed it seems only that one is. However, in the case of CrO^{2+} oxidations, the presence or absence of the CrO_2^{2+} product is definitive in determining the mechanism.

Oxidation of (CH₃CH₂)₂O. A unique property of hydrideabstracting reagents is the ability to oxidize ethers. While oneelectron (hydrogen-atom abstraction) oxidation of an ether is very difficult compared to one-electron oxidation of a similar alcohol, hydride abstraction is feasible from both alcohols and ethers.⁴² The oxidation of diisopropyl ether by MnO₄⁻ proceeds by hydride abstraction at almost the same rate as the oxidation of isopropyl alcohol.⁴³ We have found that CrO²⁺ oxidizes (CH₂CH₂)₂O 20 times more slowly than CH₃CH₂OH but only 2.7 times more slowly than (CH₃)₂CHOH.

Reaction of CrO²⁺ with Aldehydes. The oxidation of aldehydes by $H_2CrO_4^{44}$ and $Cr(IV)^{45}$ has already been studied in some detail. The HCrO₄ oxidation of HCHO induces the oxidation of Mn²⁺ with an induction factor (ratio of moles of Mn²⁺ oxidized to moles of aldehyde oxidized) of 0.5, implying that Cr(IV) is a reactive intermediate. The fate of Cr(IV) may have been oxidation by H_2CrO_4 , one-electron oxidation of HCHO yielding Cr^{3+} , or two-electron oxidation of HCHO to yield Cr²⁺. No evidence was then available to distinguish between these alternatives. In the more recent study,⁴⁵ the reaction of HCrO₄⁻ with VO²⁺ was used to generate Cr(IV) in situ. Addition of an aldehyde to the reaction mixture decreases the yield of VO₂⁺ without affecting the rate of loss of HCrO₄, which led the authors to conclude that the aldehyde reacts only with Cr(IV) and not with Cr(V). On the basis of the relative reactivity of various aldehydes, it was shown that aldehydes react exclusively in their hydrated forms. Since HCHO is essentially completely hydrated in aqueous solution (K = 1.8×10^3),⁴⁶ the rate constant measured in this work, 91.7 L $mol^{-1} s^{-1}$, is the rate constant for the reaction between CrO^{2+} and $CH_2(OH)_2$. The mechanism of oxidation is hydride abstraction based on the observation of the inorganic product CrO_2^{2+} . The organic product is inferred to be HCOOH.

The reaction of pivaldehyde with CrO^{2+} in the presence of O₂ does not yield CrO₂²⁺ but does give large amounts of radical cleavage products. A one-electron oxidation followed by elimination of CO from the pivaloyl radical seems to be favored in this case, as in reactions 34 and 35. The fate of the tert-butyl radical

$$CrO^{2+} + (CH_3)_3CCHO \rightarrow CrOH^{2+} + (CH_3)_3CCO$$
(34)

$$(CH_3)_3CCO \rightarrow (CH_3)_3C^* + CO \tag{35}$$

depends on the O₂ concentration. At low or zero [O₂], the radical disproportionates to isobutane and isobutene. In oxygenated solutions the tert-butyl peroxyl radical is formed, which then decomposes bimolecularly to the tert-butoxyl radical.⁴⁷ This radical fragments to acetone and methyl radical, and the latter abstracts a hydrogen atom from pivaldehyde to become methane.

Reaction of CrO^{2+} with HCO_2H and $H_2C_2O_4$. The formation of CrO_2^{2+} in both of these reactions implies a two-electron, hydride-transfer mechanism. The inverse acid-dependence is consistent with direct formation of CO_2 from HCO_2^- and $HC_2O_4^-$, as in eqs 36 and 37. The rate constants k_{36} and k_{37} are much

$$CrO^{2+} + HCO_{2^{-}} \rightarrow CrOH^{+} + CO_{2}$$
 (36)

$$CrO^{2+} + HC_2O_4^{-} \rightarrow CrOH^+ + 2CO_2$$
(37)

larger than the rate constants for oxidation of HCO₂H and $H_2C_2O_4$. This is partly due to the increased equilibrium constant for formation of the precursor complex from oppositely-charged ions. In addition, the product, CO₂, is formed directly from HCO₂⁻ and $HC_2O_4^-$ in the correct protonation state; therefore the energy of the transition-state is lowered by the preequilibrium loss of a proton. The second-order dependence on H₂C₂O₄ observed at high $[H_2C_2O_4]$ may be due to association of $H_2C_2O_4$ in solution; such interactions have been previously noted.48

Summary

 CrO^{2+} is a versatile oxidant with a half-life of ca. 30 s in 1.0 M HClO₄ at 25 °C. It oxidizes alcohols, aldehydes, and carboxylates by a two-electron mechanism in all cases except for

(44) Chatterji, A. C.; Mukherjee, S. K. J. Am. Chem. Soc. 1958, 80, 3600.

(48) Hasan, F.; Roček, J. J. Am. Chem. Soc. 1972, 94, 9073.

⁽³⁹⁾ Mosher, W. A.; Driscoll, G. L. J. Am. Chem. Soc. 1968, 90, 4189. (40) Roček, J.; Radkowsky, A. E. J. Am. Chem. Soc. 1973, 95, 7123. (41) Trahanovsky, W. S. In Methods in Free-radical Chemistry; Huger,

E. S., Ed.; Dekker: New York, 1973; p 133

⁽⁴²⁾ Brownell, R.; Leo, A.; Chang, Y. W.; Westheimer, F. H. J. Am. Chem. Soc. 1960, 82, 406.

⁽⁴³⁾ Barter, R. M.; Littler, J. S. J. Chem. Soc. B 1967, 205

 ⁽⁴⁵⁾ Roček, J.; Ng, C.-S. J. Am. Chem. Soc. 1974, 96, 1522.
 (46) Bell, R. P.; Clunie, J. C. Trans. Faraday Soc. 1952, 48, 439.

⁴⁷⁾ Howard, J. A. In Free Radicals; Kochi, J. K., Ed.; Wiley: New York, 1973; Vol. 2, p 33.

The rate constants for all the alcohol and aldehyde reactions studied here are very similar, and the reactivity trends are inconsistent with the formation of alkyl radicals. The rate of oxidation of R₂CHOH to R₂CO depends slightly on the steric bulk of R, which suggests that prior coordination of the alcohol to CrO^{2+} may be required before hydride transfer occurs.

Acknowledgment. This work was supported by a grant from the National Science Foundation (CHE-9007283). Some of the results were obtained with the use of the facilities of the Ames Laboratory. S.L.S. acknowledges the Natural Sciences and Engineering Research Council of Canada for a 1967 Science and Engineering Scholarship. We are grateful to F. H. Westheimer for comments.

Registry No. CrO^{+2} , 136301-85-4; CH₃OH, 67-56-1; D₂, 7782-39-0; CH₃CH₂OH, 64-17-5; (CH₃)₂CHOH, 67-63-0; CH₂=CHCH₂OH, 107-18-6; CH₃(CH₂)₂CH₂OH, 71-36-3; CH₃CH₂CH(OH)CH₃, 78-92-2; C₆H₅CH₂OH, 100-51-6; C₆H₅CH(OH)CH₃, 98-85-1; (C₆H₃)₂CHOH, 91-01-0; (4-CH₃O)C₆H₄CH₂OH, 105-13-5; (4-CH₃O)C₆H₄CH₂OH, 349-95-1; (CH₃)₃CCH₂OH, 75-84-3; HCO₂H, 64-18-6; H₂C₂O₄, 144-62-7; (CH₃CH₂D₂O, 60-29-7; CrO₂⁺², 34021-34-6; Cr⁺², 22541-79-3; O₂, 7782-44-7; CrOOCr⁺⁴, 136301-86-5; TIOH⁺², 15823-78-6; HCrO₄⁻, 15596-54-0; cyclobutanol, 2919-23-5; cyclopentanol, 96-41-3; formaldehyde hydrate, 53280-36-7; pivaldehyde, 630-19-3.

Chemistry of an $(\eta^6$ -Metallabenzene)metal Complex, [$(\eta^6$ -Ir $\overline{CH} - C(Me) - CH - C(Me) - CH)(PEt_3)_3$]Mo(CO)₃¹

John R. Bleeke,* Laura A. Bass, Yun-Feng Xie, and Michael Y. Chiang

Contribution from the Department of Chemistry, Washington University, St. Louis, Missouri 63130. Received September 20, 1991

Abstract: "Iridabenzene", $(Ir:CH:C(Me):CH:C(Me):CH)(PEt_3)_3(1)$, displaces p-xylene from $(\eta^6$ -p-xylene)Mo(CO)_3 in tetrahydrofuran solvent, producing $(\eta^6$ -iridabenzene)Mo(CO)_3(2). The solid state structure of 2 has been determined by a single-crystal X-ray diffraction study (monoclinic, $P2_1/n$, a = 9.897(1) Å, b = 16.213(3) Å, c = 20.937(3) Å, $\beta = 96.68(1)^\circ$, V = 3336.7(9) Å³, Z = 4, R = 0.036, $R_w = 0.042$). The iridium center in 2 retains the square-pyramidal coordination geometry of parent compound 1, but the Mo(CO)₃ moiety now occupies the formerly "open face" of the pyramid. In solution, the iridabenzene ring rotates with respect to the Mo(CO)₃ fragment. The barrier for this process (ΔG^*) is estimated to be less than 8 kcal/mol. Treatment of 2 with PMe₃ or CO (L) results in clean replacement of one basal PEt₃ ligand and production of $[(\eta^6-Ir:C(Me):CH:C(Me):CH)(PEt_3)_2(L)]Mo(CO)_3$ (3, $L = PMe_3$; 4, L = CO). The solid state structure of 3 (monoclinic, $P2_1/n$, a = 10.005(2) Å, b = 18.012(3) Å, c = 17.055(4) Å, $\beta = 93.33(2)^\circ$, V = 3068.3(11) Å³, Z = 4, R

(monoclinic, F_{2_1}/n , a = 10.005 (2) A, b = 18.012 (3) A, c = 17.035 (4) A, b = 93.33 (2), v = 3008.3 (11) A², Z = 4, R = 0.031, $R_w = 0.041$) confirms the basal coordination position of the PMe₃ ligand. As in 2, solution-phase arene ring rotation in 3 and 4 is facile. Treatment of 2-4 with HBF₄·OEt₂ leads to protonation of the metal centers and production of the novel

 μ -H heterobimetallic complexes, {[(η^6 -Ir:-CH:-C(Me):-CH)(PEt_3)_2(L)(μ -H)]Mo(CO)_3]⁺BF₄⁻ (5, L = PEt₃; 6, L = PMe₃; 7, L = CO). In the solid state structure of 6-tetrahydrofuran (orthorhombic, $P2_12_12_1$, a = 10.200 (4) Å, b = 16.467 (9) Å, c = 22.023 (7) Å, V = 3699 (3) Å³, Z = 4, R = 0.022, $R_w = 0.029$), the hydride ligand resides approximately trans to the axial phosphine on iridium but bends in slightly toward molybdenum, generating a P_{ax} -Ir-H angle of 173 (2)°. The Ir-H and Mo-H bond lengths are 1.77 (6) and 1.97 (7) Å, respectively. While solution-phase arene ring rotation still occurs in 5-7, the barrier for this process (ΔG^*) increases to ~13.5-15 kcal/mol.

Introduction

Several years ago we reported the high-yield synthesis of a stable

metallabenzene complex, (Ir:CH:C(Me):CH:C(Me):CH). (PEt₃)₃ (1).^{1b,2} The structural and spectroscopic features of this species clearly indicated the presence of an aromatic ring system. Fenske-Hall calculations showed that the π -bonding in this ring involved the participation of an iridium-based d orbital with the set of five carbon-based p orbitals.³ Recently, we have begun to explore the reaction chemistry of iridabenzene 1 and have Scheme I

discovered that it can be readily coordinated to a Mo(CO)₃ moiety,

producing $[(\eta^6-Ir-CH-C(Me)-CH-C(Me)-CH)(PEt_3)_3]$ Mo-(CO)₃ (2).^{1e} In this paper, we describe the structure, spectroscopy, and reactivity of (metallabenzene)metal complex 2 and compare its chemistry to that of the parent complex 1. Since 1 and 2 represents the first *matched pair* of metallabenzene and (metallabenzene)metal complexes,⁴ they afford a unique opportunity for comparative study.

⁽¹⁾ Metallacyclohexadiene and Metallabenzene Chemistry. 6. For previous papers in this series; see: (a) Bleeke, J. R.; Peng, W.-J. Organometallics **1987**, 6, 1576. (b) Bleeke, J. R.; Xie, Y.-F.; Peng, W.-J.; Chiang, M. J. Am. Chem. Soc. **1989**, 111, 4118. (c) Bleeke, J. R.; Peng, W.-J.; Xie, Y.-F.; Chiang, M. Y. Organometallics **1990**, 9, 1113. (d) Bleeke, J. R.; Haile, T.; Chiang, M. Y. Organometallics **1991**, 10, 19. (e) Bleeke, J. R.; Xie, Y.-F.; Bass, L.; Chiang, M. Y. J. Am. Chem. Soc. **1991**, 113, 4703. See, also: Bleeke, J. R. Acc. Chem. Res. **1991**, 24, 271.

⁽²⁾ Metallabenzenes are very rare. Only one other stable metallabenzene complex has been reported. See: Elliott, G. P.; Roper, W. R.; Waters, J. M. J. Chem. Soc., Chem. Commun. 1982, 811,

⁽³⁾ Bleeke, J. R.; Clayton, T. W., Jr., to be published.

⁽⁴⁾ One other example of (metallabenzene)metal complex has been reported. However, in this system the free metallabenzene was not available for comparative studies. See: Kralik, M. S.; Rheingold, A. L.; Ernst, R. D. Organometallics 1987, 6, 2612.